Student Preview mode is ON	Settings	Exit Preview
MCB-3421-Introduction to Molecular Evolution and Bioinformatics-SEC001-1188	A	ssessments

Take Test: Takehome exam 4

.....

Take Test: Takehome exam 4

Description	This exam is due on Friday at 5pm		
Description			
Instructions			
Multiple Attemp	ots Not allowed. This test can only be taken once.		
Force Completic	on This test can be saved and resumed later.		
Vuestion Com	pletion Status:		
OUESTIO	N 1		
QUESTIO	DN 1	2 points	Saved
QUESTIO What Boole	DN 1 ean operators can be used in NCBI/Entrez searches?	2 points	Saved
QUESTIO What Boole For the tool	DN 1 ean operators can be used in NCBI/Entrez searches? lbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).	2 points	Saved
QUESTIO What Boole For the tool	ON 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).	2 points	Saved
QUESTIO What Boole For the tool	ON 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + 3 (12pt) +	2 points	Saved
QUESTIO What Boole For the tool	DN 1 ean operators can be used in NCBI/Entrez searches? lbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + 3 (12pt) +	2 points	Saved
QUESTIO What Boole For the tool	ON 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + 3 (12pt) +	2 points	Saved
QUESTIO What Boole For the tool	ON 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + (3 (12pt) +)	2 points	Saved
QUESTIO What Boole For the tool	ON 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + (3 (12pt) +)	2 points	Saved
QUESTIO What Boole For the tool	DN 1 ean operators can be used in NCBI/Entrez searches? bar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Arial + (3 (12pt) +)	2 points	Saved

Path: p		Words:3
•		
		. 1
 True False 		
QUESTION 3	1 points	Saved
True/False Most duplicated genes go on to preform a functions in an organism.	new	
🔿 True		
● False		
		Saved
QUESTION 4	1 points	Saveu
QUESTION 4 True/False Plastids are descended from free living Cya (also sometimes called blue green algae).	anobacteria	Saveu
QUESTION 4 True/False Plastids are descended from free living Cya (also sometimes called blue green algae). • True	anobacteria	Saveu

QUESTION 5	1 points	Saved
Which is the most abundant oxygenic photoautotroph in the ocean?		
Thermotoga		
Halobacterium		
Prochlorococcus		
Synechococcus		
QUESTION 6	1 points	Saved
Which of the following is NOT one of the possible fates of a recently duplicated copy of a gene?		
O ^{A.} Decay, loss of function, and piece-wise deletion.		
B. Gain a homing endonuclease domain and turn into an intein.		
^{C.} Subfuctionalization (Both copies retain only part of the original function).		
^{OD.} Neofunctionalization (Acquires a new function).		
○ ^{E.} Sit around for a some time as junk DNA.		
QUESTION 7	1 points	Saved
Which of the following is NOT an example how a new gene can b created?	be	
○ ^{A.} Through mutations		
B. Left over DNA of viruses or other genetic parasite being repurposed		
• C.		

Golgi Apparatus packaging of proteins		
O ^{D.} Gene duplication followed by neofunction	alization	
○ ^{E.} None of the above		
QUESTION 8	1 points (Extra Credit)	Saved
Describe a process that in your opinion goes be (offspring similar to parents but random inherit replacement, selection due to limited resources	eyond the simplest definition of ed variation, more offspring that i).	natural se an necess
For the toolbar, press ALT+F10 (PC) or ALT+FN+	F10 (Mac).	
Arial 🗘 3 (12pt) 🗘		
Lineage fusion as in endosymbiosis		
Acquisition of new genes through HGT		
Acquisition of new genes through HGT Large mutations that create "hopeful monsters	S"	
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations	S"	
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p	S"	Wo
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p	S"	Wo
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p QUESTION 9	s" 1 points	Wo
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p QUESTION 9 Give a few examples (at least 3) of eukaryotic al cells. Give the name of the host, and the name of question mark.	s" 1 points gae becoming endosymbionts i of the symbiont in parenthesis,	Wo Saved in other en if known,
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p QUESTION 9 Give a few examples (at least 3) of eukaryotic al cells. Give the name of the host, and the name question mark. For the toolbar, press ALT+F10 (PC) or ALT+FN+	s" 1 points gae becoming endosymbionts i of the symbiont in parenthesis, F10 (Mac).	Wo Saved in other en if known,
Acquisition of new genes through HGT Large mutations that create "hopeful monsters directed mutations Path: p QUESTION 9 Give a few examples (at least 3) of eukaryotic al cells. Give the name of the host, and the name of question mark. For the toolbar, press ALT+F10 (PC) or ALT+FN+	s" 1 points gae becoming endosymbionts i of the symbiont in parenthesis, F10 (Mac).	Wo Saved in other en if known,

uglena (green algae)	
vinoflagelates (mostly red algae)	
picoplast (remnant of plastic in plasmodium) (red algae)	
ee https://en.wikipedia.org/wiki/Algae	
ath: p	Words:
QUESTION 10 1 points Saved	
tochondial Eve lived:	
3.2-4.2 million years ago	
750,000 years ago	
166-249 thousand years ago	
10 thousand years ago	
90-100 thousand years ago	
	_
QUESTION 11 Saved	
QUESTION 11 Saved	
QUESTION 11 Saved ho drew the first phylogenetic trees? A. Lamarck	
QUESTION 11 1 points Saved	

OD. Henning		
QUESTION 12	1 points	Saved
Who first suggested that evolution could be described as a Coral of Life?	I	
O ^{A.} Lamarck		
• B. _{Darwin}		
O ^{C.} Mayr		
O D. _{Woese}		
QUESTION 13	1 points	Saved
Which organisms constitute the archaeplastida?		
^{A.} Red, Green, and Brown Algae		
^{OB.} All photosynthetic Eukarya		
● ^{C.} Glaucophytes, Red Algae, Green Algae (I & II), and Plants		
D. Even thing that has a Red Algae endocumbient		
Everything that has a ked Aigae endosymbiont		
^C ^{E.} Everything that has a Green Algae endosymbiont		
^{C E.} Everything that has a Green Algae endosymbiont		
^C ^E Everything that has a Green Algae endosymbiont	1	
• Everything that has a Green Algae endosymbiont • E. Everything that has a Green Algae endosymbiont • QUESTION 14	1 points	Saved
 Everything that has a Red Algae endosymbiont E. Everything that has a Green Algae endosymbiont QUESTION 14 Which of the following is true regarding HGT? 	1 points	Saved
 Everything that has a Red Algae endosymbiont E. Everything that has a Green Algae endosymbiont QUESTION 14 Which of the following is true regarding HGT? A. It is a process through which genes enter a genome, withou being inherited parentally 	1 points	Saved

^{OD.} It is more common in Bacteria than in humans.		
● ^{E.} All of the above.		
OUESTION 15	3 noints	Saver
Which of the following is an advantage of using the Coral a description for life's evolution? (Multiple correct answer	of Life as	Saved
Fan shaped coral have bifurcating and fusing lineages. could represent speciation events and the fusion betw divergent lineages, respecitvely.	These veen	
The Coral of Life explicitly considers extinct lineages.		
In a stone coral the living cells sit on top of the remnan their dead ancestors. This is similar in evolution, when the extant species are alive, whereas the lineages leadi them are constituted by dead ancestors.	nts of re only ing to	
In a stone coral the living cells sit on top of the remnant their dead ancestors. This is similar in evolution, when the extant species are alive, whereas the lineages lead them are constituted by dead ancestors. QUESTION 16	nts of re only ing to 1 points	Saveo
 In a stone coral the living cells sit on top of the remnant their dead ancestors. This is similar in evolution, when the extant species are alive, whereas the lineages leaded them are constituted by dead ancestors. QUESTION 16 Why did Darwin consider the term "Coral of Life" as preferabterm "tree of life"? 	nts of re only ing to 1 points le over the	Save
 In a stone coral the living cells sit on top of the remnant their dead ancestors. This is similar in evolution, when the extant species are alive, whereas the lineages leaded them are constituted by dead ancestors. QUESTION 16 Why did Darwin consider the term "Coral of Life" as preferabterm "tree of life"? Because an herbarium specimen of a red algae that was wronglas a coral looked very similar to a phylogenetic tree. 	nts of re only ing to 1 points le over the ly labeled	Save
 In a stone coral the living cells sit on top of the remnant their dead ancestors. This is similar in evolution, when the extant species are alive, whereas the lineages leaded them are constituted by dead ancestors. QUESTION 16 Why did Darwin consider the term "Coral of Life" as preferabterm "tree of life"? Because an herbarium specimen of a red algae that was wronglas a coral looked very similar to a phylogenetic tree. Because he recognized that fusion of lineages is an important period species, and fan corals often have strands that fusion contrast, tree branches only branch and never fuse. 	nts of re only ing to 1 points le over the ly labeled process in e, in	Saved

	1 points	Saved
The Modern Synthesis ignores the significance of mutatio of the evolutionary process	ns for the direction	
💽 True		
◯ False		
QUESTION 18	1 points	Saved
What is GC strand bias?		
O There are more GC nucleotide pair sinear the origin.	imple repeats	
The CC versus AT content of a gener	ma ahanaaa	
over time due to the mutation bias.	me changes	
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging 	g is different strand.	
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. 	g is different strand.	
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. 	g is different strand.	
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. 	g is different strand. 4 points	Saved
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. QUESTION 19 The leading and lagging strand in a bacterial circule of the leading and leadi	g is different strand. 4 points	Saved
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. QUESTION 19 The leading and lagging strand in a bacterial circul is usually have different nucleotide comoposition 	g is different strand. 4 points	Saved
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. QUESTION 19 The leading and lagging strand in a bacterial circul usually have different nucleotide comoposition differ in the number of genes that are transcrib strand into mRNA 	g is different strand. 4 points ar chromosome	Saved
 The CG versus AT content of a genon over time due to the mutation bias. The G versus C content of the leading from the G versus C content lagging None of the above. QUESTION 19 The leading and lagging strand in a bacterial circul usually have different nucleotide comoposition differ in the number of genes that are transcribes strand into mRNA have different length, which makes replication wait until the other stand is completely replicated to the strand is completed to the strand to the strand is completed to the strand tot the strand to the strand to the strand tot the strand to the	g is different strand. <i>4 points</i> ar chromosome bed from the of one n machinery to red	Saved

 Within chromosome recombination events most frequently occur between point that are equidistant from the origin of replication. The reason for this may be that Recombination between point that are equidistant from the origin of replication does not place genome architecture imparting sequences in the wrong position or orientation relative to the origin and terminus of replication 	
Recombination between point that are equidistant from the origin of replication does not place genome architecture imparting sequences in the wrong position or orientation relative to the origin and terminus of replication	
Does not destroy the stand bias with respect to the number of ORF encoded on the leading strand	
Recombination occurs at particular motifs that are at the corresponding location relative to the origin of replication	
Recombination occurs at the same time as replication	